Anticoagulant and Antiplatelet Use Among Hemodialysis Patients in the United States Without Medicare

To the Editor:

Kidney failure affects more than 725,000 individuals in the United States (US) with an estimated 63% of patients receiving hemodialysis and 7% of patients receiving peritoneal dialysis in 2016. Patients with kidney failure receiving hemodialysis have an increased risk of bleeding, thrombosis, and cardiovascular events vs. patients without kidney failure. Despite clear thrombotic risk in patients with kidney failure, especially those with atrial fibrillation, anticoagulant and antiplatelet use is tempered by limited evidence of efficacy, lack of randomized clinical trials, and concern for serious bleeding in patients with atrial fibrillation undergoing long-term dialysis. While some studies indicate that anticoagulants reduce stroke, mortality, and thromboembolism without an increase in bleeding, others indicate that anticoagulants do not decrease mortality rates or risk of stroke in these patients and may increase bleeding. This opposing evidence may be due to anticoagulant dosage, patient bias, stage of kidney disease, and study methodology. Faced with contradictory findings, the current cardiovascular treatment guidelines provide vague recommendations on anticoagulant and antiplatelet use in patients with kidney failure.

Medicare generally covers the cost of hemodialysis and associated treatment services as defined by the Centers for Medicare & Medicaid Services. However, approximately 10% of US patients with kidney failure receiving hemodialysis are not insured through Medicare due to a mandated waiting period. The use of anticoagulants and antiplatelets among these patients is particularly poorly understood. Therefore, the objective of this retrospective observational cohort
study was to assess the use of anticoagulants and antiplatelets among US patients with kidney failure receiving hemodialysis who do not have primary insurance coverage through Medicare.

Administrative claims data from the Optum Clinformatics® Data Mart commercial database (Optum, Eden Prairie, MN) were analyzed. Detailed methods are found in Item S1 and Table S1.

A total of 77,936 patients initiating hemodialysis between 2014 and 2018 were identified. The study population included 7,400 (9%) patients who met the inclusion criteria. One-fifth of patients in the study (n=1,495, 20%) were on an anticoagulant and/or antiplatelet while receiving hemodialysis (Figure 1). Among these patients, more used antiplatelets (n=854, 12%) than warfarin (n=570, 8%) or direct oral anticoagulants (DOACs) (n=242, 3%). About 1% of patients were prescribed more than one antiplatelet (n=50) or an antiplatelet plus a DOAC (n=37). Patients on anticoagulants and/or antiplatelets were slightly older than patients not on these medications (55 vs. 50 years), but roughly the same percentage were male (n=960, 64% vs. n=3,730, 63%) (Table 1). A larger proportion of patients on anticoagulants or antiplatelets vs. those patients not on these medications had a history of cerebrovascular disease (n=251, 17% vs. n=342, 6%) and myocardial infarction (n=557, 37% vs. n=720, 12%). Patients who received an anticoagulant and/or antiplatelet used them for about one-third of the time after starting hemodialysis, assuming use at standard doses. Approximately 14% (n=1,025) of patients had evidence of atrial fibrillation at some point during the full observation period and more than half (n=550, 54%) of those used an anticoagulant and/or antiplatelet following hemodialysis initiation. Following a claim including a myocardial infarction diagnosis, 105 (79.5%) patients not on an anticoagulant or antiplatelet started one, while following a claim including an ischemic stroke diagnosis, 42 (73.7%) patients started one (Table S2). Following a claim mentioning a
major bleeding event, 137 (67.2%) patients on anticoagulants or antiplatelets at the time of the event stopped their therapy (Table S3).

While 20.2% of patients were administered anticoagulants/antiplatelets following hemodialysis initiation, 23.2% filled at least one prescription during the full study period – including prior to hemodialysis. This suggests a small proportion of patients discontinued anticoagulants/antiplatelets after starting hemodialysis.

Some limitations to the analysis should be considered. Insurance claims data do not reflect patients’ full medical histories, coverage continuity, or whether prescribed medication was taken. Additionally, the algorithms for identifying myocardial infarctions, ischemic strokes and major bleeding events from ICD-10 codes have not been validated. Although the published algorithm identifying major bleeding events from ICD-9 codes distinguishes between first and subsequent diagnoses in the patient record, the Optum commercial database does not. The lack of distinction between first and subsequent diagnoses also means that records for events such as MI or stroke may refer to a history of such events rather than an event at the time the claim was recorded. Additionally, patients receiving hemodialysis on anticoagulants/antiplatelets used them only about a third of the time after initiating hemodialysis, assuming use at standard doses. If instructed to take at reduced doses, they may have been on these therapies longer. Beyond standard claims data limitations, the study depended on non-Medicare medical coverage data, which presented challenges because of the nature of insurance coverage surrounding hemodialysis. The analysis was limited to 30 months of follow up due to the typical 30-month Medicare transition period. Results may not be generalized to a Medicare population.

In this retrospective claims-based study, we found that one-fifth of non-Medicare patients with kidney failure were being treated with an antiplatelet and/or anticoagulant while receiving...
hemodialysis. Our results are similar to those found in an analysis of a Medicare hemodialysis population using US Renal Data System data. In that study, an estimated 20% of the Medicare hemodialysis population with a history of cardiovascular disease received an antiplatelet and 3% received a DOAC. Our study also found that more than half of patients with atrial fibrillation used an antiplatelet and/or anticoagulant after initiating hemodialysis.

More research is warranted to understand the risk-benefit profile of anticoagulants and antiplatelets in treating patients with kidney failure receiving hemodialysis. Our findings can provide context for quantifying the use of these medications among this patient population.

Robert Boggs, PhD, Lingfeng Yang, PhD, Dominik Lautsch, PhD, Dena Rosen Ramey, BA, Sarah Liu, PhD, G. Brandon Atkins, MD, PhD, Ciaran Joseph McMullan, MB BCh BAO (Hon) MMSc

Supplementary Material

Item S1. Detailed methods.

Table S1. Major bleeding events that were identified using ICD-9 and ICD-10 codes

Table S2. The proportion of patients not using A/A who had a myocardial infarction or stroke and then started A/A.

Table S3. The proportion of patients using A/A who had a major bleeding event and then stopped using A/A.

Descriptive Text for Online Delivery

Supplementary File (PDF)

Item S1, Table S1-S3

Article Information

Authors’ Affiliations: Merck & Co., Inc., Kenilworth, NJ, USA
Address for Correspondence: Robert Boggs
Merck & Co., Inc., 200 Galloping Hill Road, Kenilworth, NJ, 07033 USA
Telephone: +1-267-305-0024
Email: robert.boggs@merck.com

Authors’ Contributions: Research idea and study design: [DL, DRR, BA, RB]; data acquisition: [LY, SL]; data analysis/interpretation: [LY, RB, DL, DRR, BA, CJM]; statistical analysis: [LY, DRR, RB]; supervision or mentorship: [DRR, BA, CJM]. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Support: This study was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. Medical writing assistance in the preparation of this article was provided by Julia Zolotarjova, MSc, MWC; Shannon Gardell, PhD; Holly Richendrfer PhD; and Philip Leventhal, PhD of Evidera. Support for this assistance was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. Data analysis was performed by TigerMed Consulting Co., Ltd. (Hangzhou, China).

Financial Disclosure: Robert Boggs, Sarah Liu, Dena Rosen Ramsey, Dominik Lautsch, and Ciaran Joseph McMullan are employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA, who may own stock and/or stock options in the company. Lingfeng Yang was an employee of Merck Sharp & Dohme Corp. at the time this work was performed.
Peer Review: Received March 16, 2022. Evaluated by 1 external peer reviewer, with direct editorial input from the Statistical Editor, an Associate Editor, and the Editor-in-Chief. Accepted in revised form October 2, 2022.
Figure legends

Figure 1. Anticoagulant and antiplatelet use among non-Medicare patients receiving hemodialysisa
Abbreviations; A/A, anticoagulant/antiplatelet; DOAC, direct oral anticoagulants.
aIndex date is the first date of hemodialysis
References

Table 1. Demographics for patients using vs. not using antiplatelets/anticoagulants after initiating hemodialysis

<table>
<thead>
<tr>
<th>Time period</th>
<th>On any A/A (N=1,495)</th>
<th>Not on any A/A (N=5,905)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>54.5 (8.0)</td>
<td>49.4 (11.3)</td>
</tr>
<tr>
<td>Sex (Male), n (%)</td>
<td>960 (64.2)</td>
<td>3,730 (63.2)</td>
</tr>
<tr>
<td>Pre-index date time observed (days), mean (SD)</td>
<td>1,125.4 (943.7)</td>
<td>980.1 (867.5)</td>
</tr>
<tr>
<td>Post-index date time observed (days), mean (SD)</td>
<td>884.8 (132.3)</td>
<td>842.0 (211.0)</td>
</tr>
<tr>
<td>Charlson Comorbidity Index, mean (SD)</td>
<td>6.1 (2.7)</td>
<td>4.7 (2.7)</td>
</tr>
<tr>
<td>Medical History, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal aortic aneurysm</td>
<td>23 (1.5)</td>
<td>42 (0.7)</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>813 (54.4)</td>
<td>1,201 (20.3)</td>
</tr>
<tr>
<td>Cerebrovascular-related diseases</td>
<td>251 (16.8)</td>
<td>342 (5.8)</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>393 (26.3)</td>
<td>651 (11.0)</td>
</tr>
<tr>
<td>Myocardial infarction history</td>
<td>557 (37.3)</td>
<td>720 (12.2)</td>
</tr>
</tbody>
</table>

Abbreviations: A/A, anticoagulant/antiplatelet; SD, standard deviation; y, years

\(^a\)Index date is the first date of hemodialysis